15,752 research outputs found

    Covariant approach to equilibration in effective field theories

    Full text link
    The equilibration of two coupled reservoirs is studied using a Green function approach which is suitable for future development with the closed time path method. The problem is solved in two parameterizations, in order to demonstrate the non-trivial issues of parameterization in both the intermediate steps and the interpretation of physical quantities. We use a covariant approach to find self-consistent solutions for the statistical distributions as functions of time. We show that by formally introducing covariant connections, one can rescale a slowly varying non-equilibrium theory so that it appears to be an equilibrium one, for the purposes of calculation. We emphasize the importance of properly tracking variable redefinitions in order to correctly interpret physical quantities.Comment: 11 pages, Late

    Smarter task assignment or greater effort: the impact of incentives on team performance

    Get PDF
    We use an experiment to study the impact of team-based incentives, exploiting rich data from personnel records and management information systems. Using a triple difference design, we show that the incentive scheme had an impact on team performance, even with quite large teams. We examine whether this effect was due to increased effort from workers or strategic task reallocation. We find that the provision of financial incentives did raise individual performance but that managers also disproportionately reallocated efficient workers to the incentivised tasks. We show that this reallocation was the more important contributor to the overall outcome

    Social axioms: A new culture measure for South African business research

    Get PDF
    This study is intended to introduce social axiom theory to South African business researchers and, in this process, to provide new empirical evidence pertinent to the South African context. We examine social axioms in the largest and most representative national metropolitan population ever studied, providing scores for social axiom dimensions at the individual-level and nation-level, as well as assessments of relations with sociodemographics, values, personality and life satisfaction. The results support the convergent validity, discriminant validity and composite reliability of the 25-item brief version of the Social Axioms Scale. We extend prior research on social axioms and personality by examining relations with optimum stimulation level (OSL), an important personality construct studied in marketing and human resource management. A hierarchical regression model illustrates the power of social axioms in predicting life satisfaction, over and above the effects of sociodemographics, values and optimum stimulation level. Several points of departure for fruitful business research are identified

    Design and test of a 100 ampere-hour nickel cadmium battery module

    Get PDF
    A feasibility study was conducted on the design and construction of a flight-worthy replaceable battery module consisting of four 100 A.H. nickel-cadmium rechargeable cells for large manned space vehicles. The module is planned to weigh less than 43 pounds and be fully maintainable in a zero-g environment by one man without use of special tools. An active environmental control system was designed for the temperature control of the module

    Accidental SUSY: Enhanced Bulk Supersymmetry from Brane Back-reaction

    Get PDF
    We compute how bulk loops renormalize both bulk and brane effective interactions for codimension-two branes in 6D gauged chiral supergravity, as functions of the brane tension and brane-localized flux. We do so by explicitly integrating out hyper- and gauge-multiplets in 6D gauged chiral supergravity compactified to 4D on a flux-stabilized 2D rugby-ball geometry, specializing the results of a companion paper, arXiv:1210.3753, to the supersymmetric case. While the brane back-reaction generically breaks supersymmetry, we show that the bulk supersymmetry can be preserved if the amount of brane-localized flux is related in a specific BPS-like way to the brane tension, and verify that the loop corrections to the brane curvature vanish in this special case. In these systems it is the brane-bulk couplings that fix the size of the extra dimensions, and we show that in some circumstances the bulk geometry dynamically adjusts to ensure the supersymmetric BPS-like condition is automatically satisfied. We investigate the robustness of this residual supersymmetry to loops of non-supersymmetric matter on the branes, and show that supersymmetry-breaking effects can enter only through effective brane-bulk interactions involving at least two derivatives. We comment on the relevance of this calculation to proposed applications of codimension-two 6D models to solutions of the hierarchy and cosmological constant problems.Comment: 49 pages + appendices. This is the final version to appear in JHE

    Coriolis force corrections to g-mode spectrum in 1D MHD model

    Get PDF
    The corrections to g-mode frequencies caused by the presence of a central magnetic field and rotation of the Sun are calculated. The calculations are carried out in the simple one dimensional magnetohydrodynamical model using the approximations which allow one to find the purely analytical spectra of magneto-gravity waves beyond the scope of the JWKB approximation and avoid in a small background magnetic field the appearance of the cusp resonance which locks a wave within the radiative zone. These analytic results are compared with the satellite observations of the g-mode frequency shifts which are of the order one per cent as given in the GOLF experiment at the SoHO board. The main contribution turns out to be the magnetic frequency shift in the strong magnetic field which obeys the used approximations. In particular, the fixed magnetic field strength 700 KG results in the mentioned value of the frequency shift for the g-mode of the radial order n=-10. The rotational shift due to the Coriolis force appears to be small and does not exceed a fracton of per cent, \alpha_\Omega < 0.003.Comment: RevTeX4, 9 pages, 4 eps figures; accepted for publication in Astronomy Reports (Astronomicheskii Zhurnal

    Branonium

    Full text link
    We study the bound states of brane/antibrane systems by examining the motion of a probe antibrane moving in the background fields of N source branes. The classical system resembles the point-particle central force problem, and the orbits can be solved by quadrature. Generically the antibrane has orbits which are not closed on themselves. An important special case occurs for some Dp-branes moving in three transverse dimensions, in which case the orbits may be obtained in closed form, giving the standard conic sections but with a nonstandard time evolution along the orbit. Somewhat surprisingly, in this case the resulting elliptical orbits are exact solutions, and do not simply apply in the limit of asymptotically-large separation or non-relativistic velocities. The orbits eventually decay through the radiation of massless modes into the bulk and onto the branes, and we estimate this decay time. Applications of these orbits to cosmology are discussed in a companion paper.Comment: 34 pages, LaTeX, 4 figures, uses JHEP

    Fibre Inflation: Observable Gravity Waves from IIB String Compactifications

    Full text link
    We introduce a simple string model of inflation, in which the inflaton field can take trans-Planckian values while driving a period of slow-roll inflation. This leads naturally to a realisation of large field inflation, inasmuch as the inflationary epoch is well described by the single-field scalar potential V=V0(3−4e−φ^/3)V = V_0 (3-4 e^{-\hat\varphi/\sqrt{3}}). Remarkably, for a broad class of vacua all adjustable parameters enter only through the overall coefficient V0V_0, and in particular do not enter into the slow-roll parameters. Consequently these are determined purely by the number of \e-foldings, NeN_e, and so are not independent: ε≃32η2\varepsilon \simeq \frac32 \eta^2. This implies similar relations among observables like the primordial scalar-to-tensor amplitude, rr, and the scalar spectral tilt, nsn_s: r≃6(ns−1)2r \simeq 6(n_s - 1)^2. NeN_e is itself more model-dependent since it depends partly on the post-inflationary reheat history. In a simple reheating scenario a reheating temperature of Trh≃109T_{rh}\simeq 10^{9} GeV gives Ne≃58N_e\simeq 58, corresponding to ns≃0.970n_s\simeq 0.970 and r≃0.005r\simeq 0.005, within reach of future observations. The model is an example of a class that arises naturally in the context of type IIB string compactifications with large-volume moduli stabilisation, and takes advantage of the generic existence there of Kahler moduli whose dominant appearance in the scalar potential arises from string loop corrections to the Kahler potential. The inflaton field is a combination of Kahler moduli of a K3-fibered Calabi-Yau manifold. We believe there are likely to be a great number of models in this class -- `high-fibre models' -- in which the inflaton starts off far enough up the fibre to produce observably large primordial gravity waves.Comment: Extended calculations beyond the leading approximations, including numerical integrations of multi-field evolution; Display an example with r=0.01r = 0.01; Simplify the discussion of large fields; Corrected minor errors and typos; Added references; 41 pages LaTeX, 25 figure

    Extremely narrow spectrum of GRB110920A: further evidence for localised, subphotospheric dissipation

    Full text link
    Much evidence points towards that the photosphere in the relativistic outflow in GRBs plays an important role in shaping the observed MeV spectrum. However, it is unclear whether the spectrum is fully produced by the photosphere or whether a substantial part of the spectrum is added by processes far above the photosphere. Here we make a detailed study of the γ−\gamma-ray emission from single pulse GRB110920A which has a spectrum that becomes extremely narrow towards the end of the burst. We show that the emission can be interpreted as Comptonisation of thermal photons by cold electrons in an unmagnetised outflow at an optical depth of τ∼20\tau \sim 20. The electrons receive their energy by a local dissipation occurring close to the saturation radius. The main spectral component of GRB110920A and its evolution is thus, in this interpretation, fully explained by the emission from the photosphere including localised dissipation at high optical depths.Comment: 14 pages, 11 figures, accepted to MNRA
    • …
    corecore